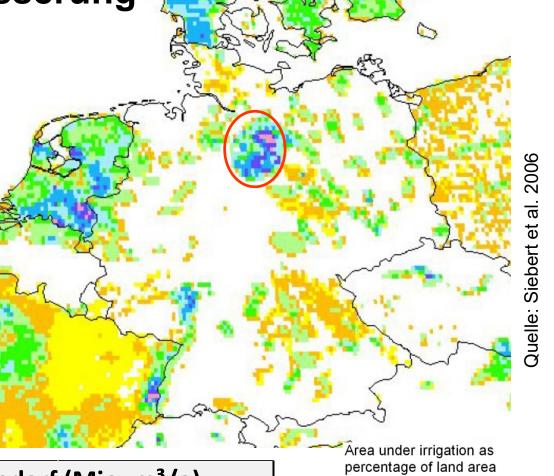
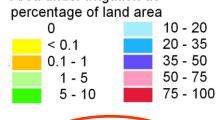
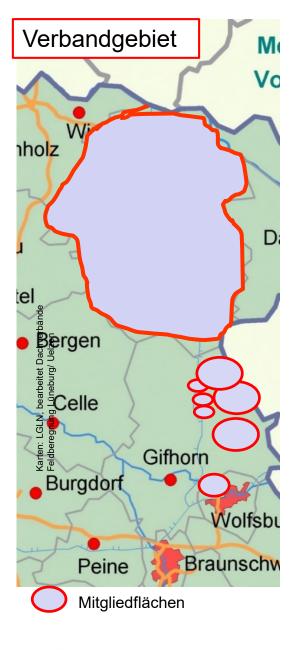
Bewässerung im Ackerbau - Wo stehen wir und was sind die Zukunftsperspektiven?

Möglichkeiten der Optimierung des Landschaftswasserhaushaltes -Projekte und Konzepte zum Wassermanagement für die Feldberegnung

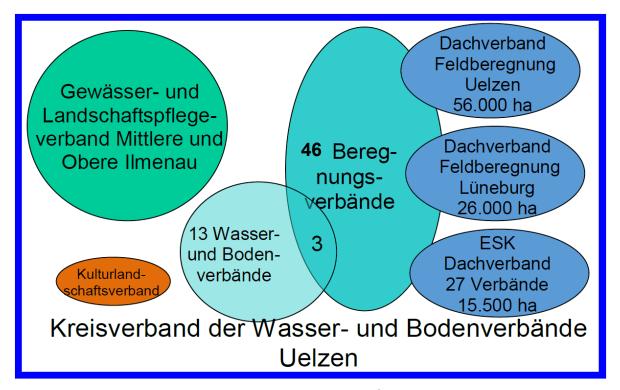

Netzwerk Ackerbau Niedersachsen (NAN) Tagung in Suderburg am 30./31. Mai 2024


Dipl.-Ing. Ulrich Ostermann Kreisverband der Wasser und Bodenverbände Uelzen Bedeutung der Bewässerung

Bewässerte Fläche:


- Deutschland
 - ~ 770.000 ha
 - ~ 7 % der Ackerfläche
- Niedersachsen (13,5% von DE)
 - ~ 360.000 ha (47% von DE)
- Nordostniedersachsen
 - ~ 250.000 ha (32% von DE)
- Kreisverband WuB UE
 - ~ 100.000 ha (13% von DE)

• Uelzen (Landkre	Eq.		~
• ~ 65.000 ha (8	,5% von DE)		Ârea under ir
Ebene	Wasserbedarf (Mio. m³/a)		percentage o 0 < 0.1
	Beregnung 2020	Beregnung 2050	0.1 - 1
Niedersachsen	250	>> 350	5 - 10
Nordost-Nds.	204	255	No.
Uelzen	50	62	niede



lordostersachsen

Insgesamt rd. 310.000 ha Verbandsfläche in 66 Verbänden

Maßnahmen zum Wassermanagement:

- 1. Wasserspeicher (Raum Uelzen)
 - 770.000 m³ (Stöcken, 2003)
 - 440.000 m³ (Borg, 2014)
 - 250.000 m³ (Störtenbüttel, 1987)
- 2. Grundwasseranreicherung
 - rd. 250.000 m³/a (Rosche, 2013)

Wasserspeicher Stöcken 2003

- Speichervolumen: ~ 770.000 m³
- Wasserfläche bei Vollfüllung: ~ 13,6 ha
- Wasserfläche bei mindest Wasserstand: ~ 11,0 ha
- Wassertiefe bei Vollfüllung: 6,30 bis 6,80 m
- Erdbewegungen beim Bau: 305.000 m³
- Verlegte Kunststoffdichtungsbahnen: 141.800 m²
- 6 Pumpen mit je 350 m³/h
- Gesamtleistung 2.100 m³/h
- Förderhöhe 12 bar (120 m)
- Anschlussleistung rd. 1 MW
- Erstellt 2003

Kreisverband der Wasser- u. Bodenverbände Uelzen Dipl.-Ing. U. Ostermann

Wasserspeicher Rosche-Borg 2014

Projekt AQuaRo (Rosche) Teilmaßnahme Versickerung (2013):

• Kiefernstangenwald ca. 35 ha

Wasserbereitstellung 350.000 m³/a (rd. 1.000 mm/a)

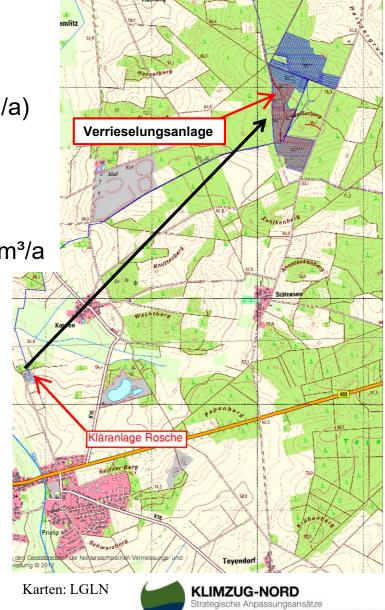
Verrieselung über Tropfschläuche

• Zuleitung von der KA Rosche ca. 5 km

Pumpwerk an der KA Rosche ca. 45 m³/h

• Kosten rd. 350.000 €

• Zusätzliche Grundwasserneubildung rd. 300.000 m³/a



Rückhalt in Gewässern

- Temporärer Einstau durch Stauanlagen (fest, teilbeweglich, automatisiert)
- Technisch leicht umzusetzen, wasserrechtlich eher schwierig
- Anhebung der GW-Stände
- Besserer kapillarer Aufstieg in den Wurzelraum
- Geringe Speicherwirkung
- Anpassung der Gewässerunterhaltung
- Umgesetzt in der Lucie im Wendland, Landkreis Gifhorn, in der Tanger in Sachsen-Anhalt
- Aktuell Projekt im Ostkreis Uelzen

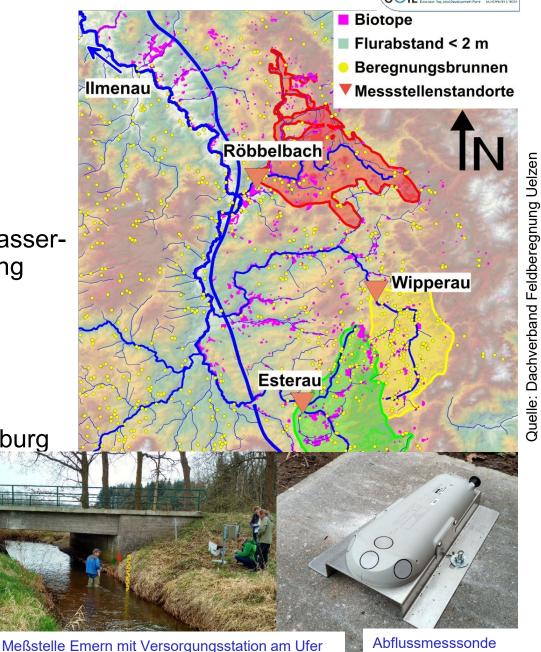
Bild: Stauanlage Beispiel aus der Lucie, Wendland (Quelle: Dachverband Feldberegnung)

Bilder (unten): Stauanlage in der Tanger, Sachsen-Anhalt (Quelle: mdr)

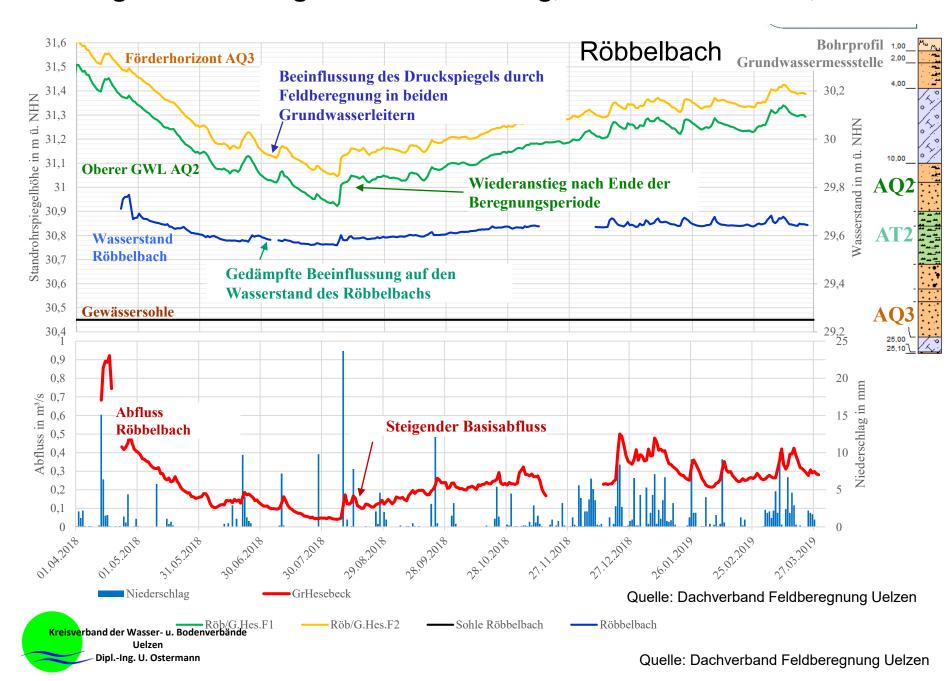
Aufbau + Erprobung eines

Monitoringsystems

Monitoring in sensiblen Gebieten:


- Biotope (gLÖS)
- Gewässeroberläufe (Minimalabflüsse)
- Hohe Betroffenheit durch Wasserentnahmen für Feldberegnung

4 Pilotgebiete:


- Gr. Hesebeck (Röbbelbach)
- Rosche (Wipperau)
- Emern (Esterau)
- Hasenburger Bach bei Lüneburg

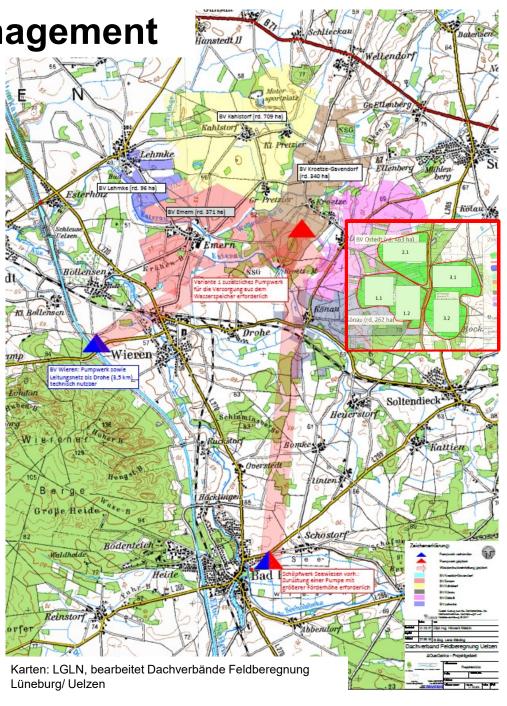
Messstellenbau:

- Abflussmessstelle
- Grundwassermessstellen
 - flach: Gewässeranschluss
 - tief: Entnahmehorizont

Erste Ergebnisse - Vergleich: Niederschlag, Grundwasserstand, Abfluss

AQuaGEKKO:

Planung Variante 1: Speicherbecken

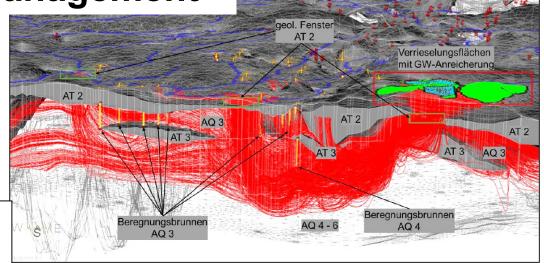

Konzept (Variante 2) Grundwasseranreicherung

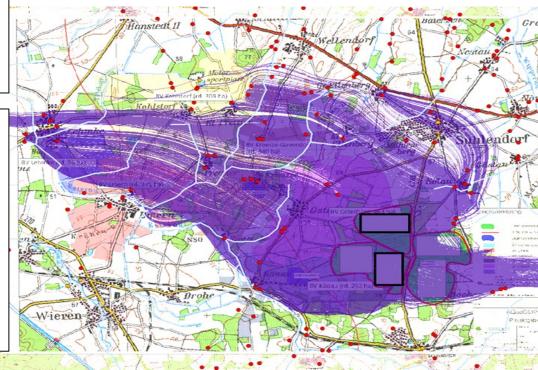
2 Versickerungsanlagen für jeweils ca. 500.000 m³/a

Schöpfwerk mit rd. 600 ha EZG Jahreswassermenge: > 1,7 Mio. m³ Minimal im Sommer: 40.000 m³/Monat

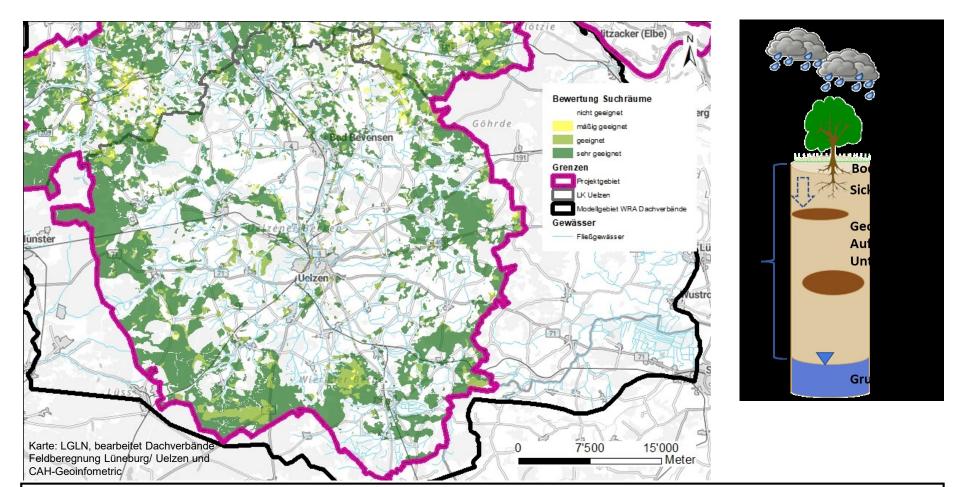
AQuaGEKKO:

Konzept


Grundwasseranreicherung 2 Versickerungs-anlagen für jeweils ca. 500.000 m³/a


Nutzen des versickerten Wassers:

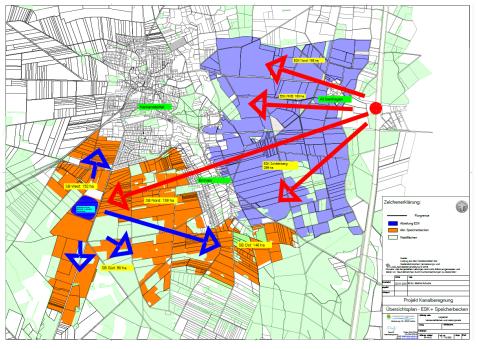
nach 5 Jahren ~ 30 % nach 10 Jahren ~ 60 % nach 15 Jahren ~ 100 %


Stationär nach max. 20 Jahren

- Grundwasserkörper reagiert verzögert
- stufenweise Mehrentnahme mit entspr. Anpassung der Wasserrechtlichen Erlaubnis
- je näher die Brunnen an der Versickerungsfläche desto größer der Nutzen

Grundwassermodell – GW-Anreicherungen: Identifizierung geeigneter Suchräume

LK Uelzen (ca. 1.454 km²): Grundwasseranreicherung

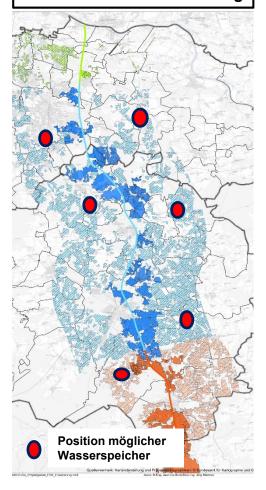

- Fläche mit Gesamtbewertung: "sehr geeignet" ca. 392 km²
- Fläche mit Gesamtbewertung: "geeignet" ca. 84,2 km²
- Fläche mit Gesamtbewertung: "evtl. geeignet" ca. 4,2 km²

rd. 500 ha

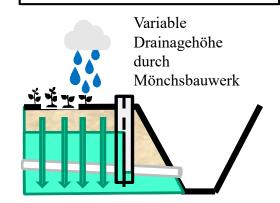
100 mm zusätzliche GW-Neubildung auf 1/5 der Fläche (100 km²) ergeben rd. 10 Mio. m³/a Wasser

Wasserspeicherkonzept Hankensbüttel

- Verbandsfläche rd. 4.000 ha
- Speichervolumen: ~ 1 Mio. m³
- Wasserfläche: ~ 15 ha
- Speicherfüllung im Winter
- Beregnung im Sommer aus
 - Speicherbecken
 - Elbe-Seitenkanal
 - Grundwasser


- Energiekonzept (PV, Speicher, Wasserstoff) Karte: LGLN, bearbeitet Kreisverband WuB Uelzen
- Vorhabenträger: Dachverband Beregnung Hankensbüttel
- Idee/Konzept: Interessen-Gemeinschaft Kanalberegnung Hankensbüttel

IWAMAKO ZuSa: Untersuchung zur Nutzung verschiedener Wasserquellen nach Qualität und Menge


Nutzung von Überschusswasser aus dem ESK

- Wasserspeicher
- Grundwasseranreicherung

Rückhalt von Drainagewasser

- Grundwasseranreicherung
- Höhere GW-Stände

Weitere Untersuchungen

- Rückhalt in Gewässern/Gräben
- Grundwasseranreicherung

- Fhomo	Wasserbedarf (Mio. m³/a)		
Ebene	Beregnung 2020	Beregnung 2050	
Niedersachsen	250	>> 350	
Nordost-Nds.	204	255	
Uelzen	50	62	

Klarwasser aus Kläranlagen

- WaterReuse: EU-Verordnung ((EU) 2020/741), gültig ab dem 26.06.2023, Fristen 2035 / 2040
- weitere Aufbereitung (mind.
 - 4. Reinigungsstufe)

Kläranlagen Uelzen	Jahresschmutz- wassermenge [m³]
Uelzen	3.985.915
Wrestedt	586.044
Rosche	295.877
Medingen	954.446
Havekost	41.684
Bienenbüttel	455.889
Suderburg	300.560
Eimke	38.294
Ebstorf	456.313
Bokel	16.540
Gesamt	7.134.191

Landwirtschaftskammer

Niedersachsen

Bund der Ingenieure für Wasserwirtschaft, Abfallwirtschaft und Kulturbau (BWK) e.V.

Bergbau, Energie und Geologie

NLWKN I E O Z E N T R U M H A N N O V E R

KLIMZUG-NORD

Strategische Anpassungsansätze zum Klimawandel in der Metropolregion Hamburg

