Kein Tropfen auf den heißen Stein: Wasser im Ackerbau nutzen und schützen

Konzepte für das Wassermengenmanagement Projekte im Landkreis Uelzen und im weiteren Nordostniedersachsen

verbände Uelzen

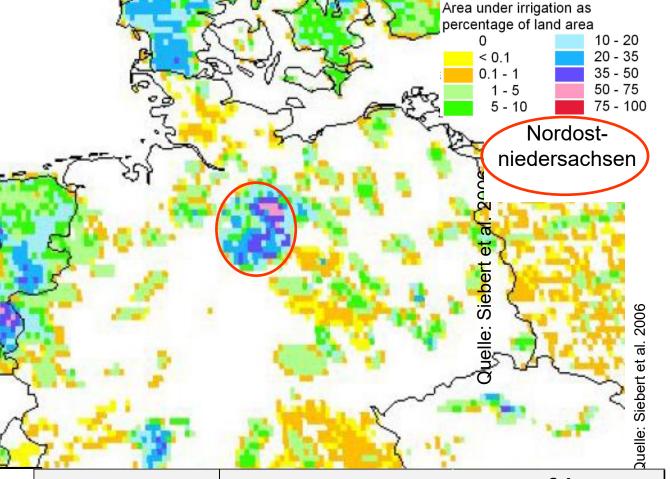
Netzwerk Ackerbau Niedersachsen (NAN) Tagung - Burg Warberg am 07. Nov. 2025

Dipl.-Ing. Ulrich Ostermann

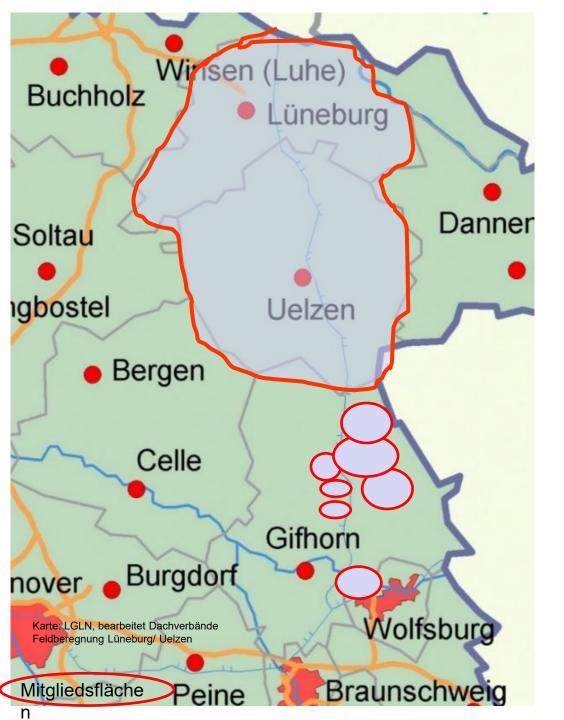
Bedeutung der Bewässerung

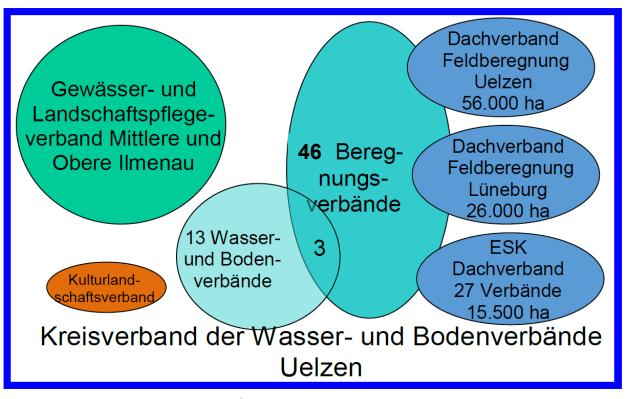
Bewässerte Fläche:

- **Deutschland** (~350.000 km²)
 - ~ 770.000 ha
 - ~ 7 % der Ackerfläche


• **Niedersachsen** (~47.000 km², 13,5% von DE)

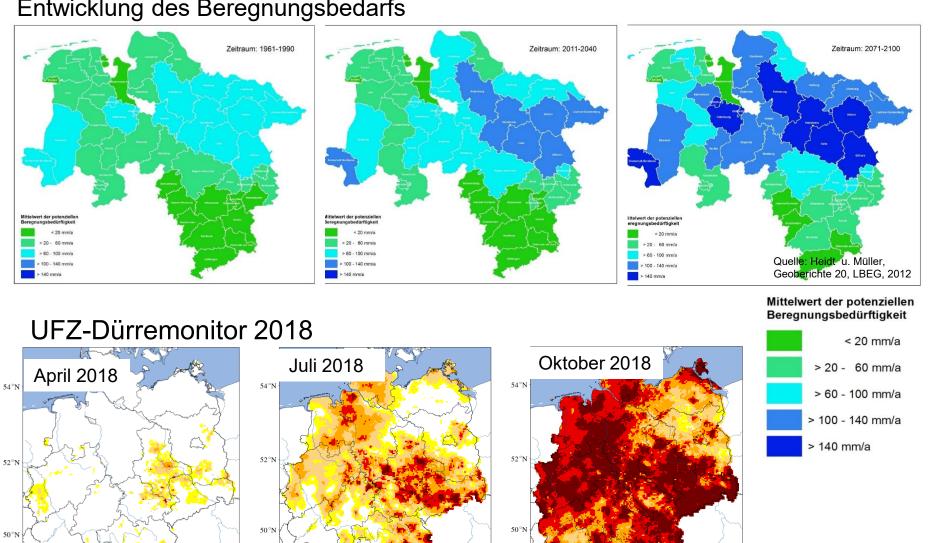
~ 360.000 ha (47% von DE)


Nordostniedersachsen (~ 10.000 km²)

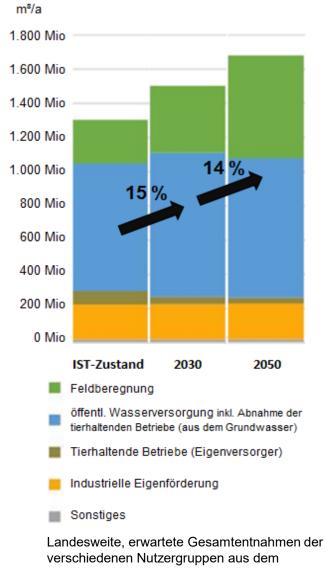

~ 250.000 ha (32% von DE)

- Kreisverband WuB UE
 - ~ 100.000 ha (13% von DE)
- Lüneburg (Kreis und Stadt, 0,3% von DE)
 - ~ 27.000 ha (3,5% von DE)
- **Uelzen** (Landkreis, 0,4% von DE)
 - ~ 65.000 ha (8,5% von DE)
- In Nordostniedersachsen ist Landwirtschaft ohne Bewässerung kaum wirtschaftlich möglich
- Bewässerung von Kartoffeln, Braugerste und Zuckerrübe sichert die erforderliche Qualität
- Bewässerung verbessert die Ausnutzung des Düngers

,	Ebene	Wasserbedarf (Mio. m³/a)		
		Beregnung 2020	Beregnung 2050	
	Niedersachsen	250	>> 350	
	Nordost-Nds.	204	255	
	Uelzen	50	62	

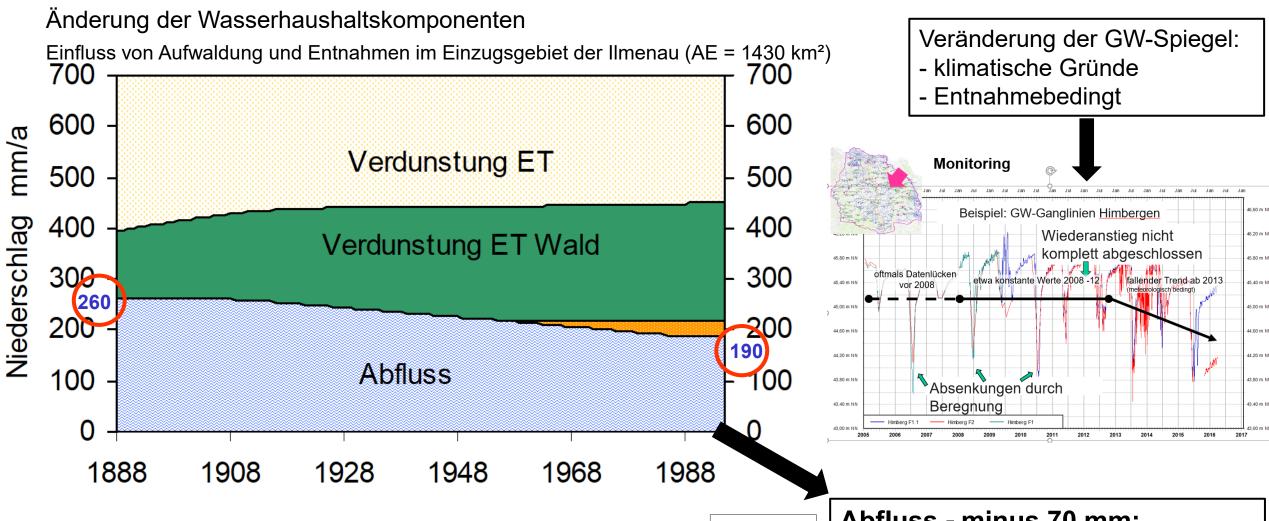


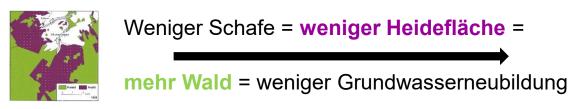
Rd. 310.000 ha Verbandsfläche, davon rd. 120.000 ha Beregnung

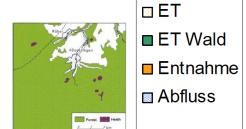

Entwicklung des Beregnungswasserbedarfs					
Fhono	Wasserbedarf (Mio. m³/a)				
Ebene	Beregnung 2020	Beregnung 2050			
Niedersachsen	250	>> 350			
Nordost-Nds.	204	255			
Uelzen	50	62			

Wasserversorgungskonzept (Land Niedersachsen, 2023)

Entwicklung des Beregnungsbedarfs

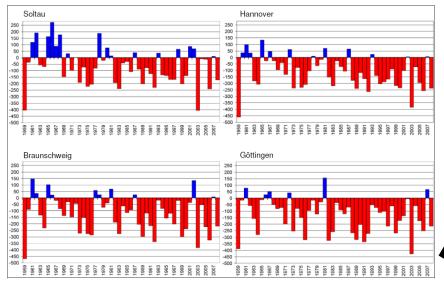



Entwicklung des Wasserbedarfs in Niedersachsen



Grundwasser für den IST-Zustand und die Betrachtungszeitpunkte 2030 und 2050

Anthropogener und klimatischer Einfluss: Grundneubildung, Abfluss, Wasserhaushalt



Abfluss - minus 70 mm:

- > 100 Mio. m³/a Abflussrückgang
 - 20 mm durch GW-Entnahmen
 - 50 mm durch Aufwaldung

Klimatische Randbedingungen

Abb. 3: Klimatische Wasserbilanz in Millimetern 1959-2009 an den Standorten Soltau, Hannover, Braunschweig und Göttingen

Klimastation Lüneburg

Sommer- und Winterniederschlag

2025

1961- 1971- 1981- 1991- 2001- 2011- 2021- 2031- 2041- 2051- 2061- 2071- 2081- 2091

--- Trend Sommerniederschlag

--- Trend Winterniederschlag

650

600

550

500

450

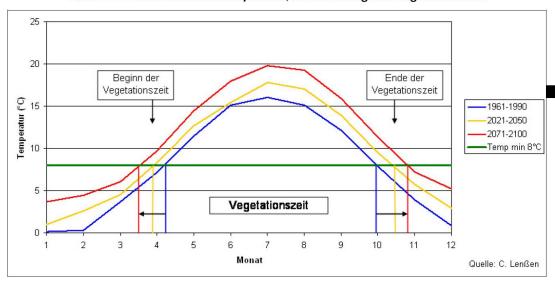
400 350

300

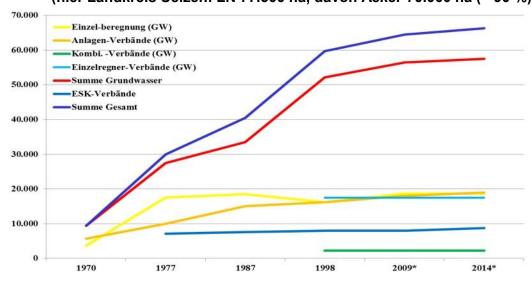
250

Winterniederschlag

Niederschlag [mm]


Jahresniederschlag: leicht ansteigend

Sommerniederschlag: Abnahme


Winterniederschlag: Zunahme

Quelle: DWD und Fachverband Feldberegnung (1959-2009): Klimatische Wasserbilanz; Grafik: Fachverband Feldberegnung (2009)

Abb. 15: Verlauf der Mitteltemperatur, Ausdehnung der Vegetationszeit

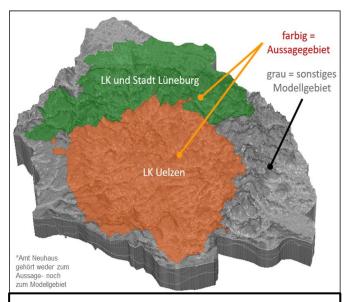
Entwicklung der Beregnung seit 1970 in Nordostniedersachsen (hier Landkreis Uelzen: LN 77.300 ha, davon Acker 70.000 ha (~ 90 %)

Landkreis Uelzen: LN 77.300 ha, davon Acker 70.000 ha (~ 90 %)

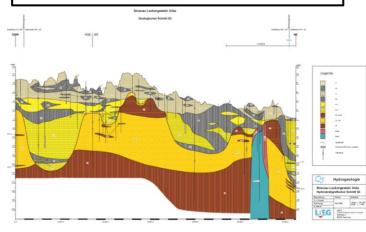
Quelle: Lenben (2010): Veränderung der Vegetationszeit

Umgesetzte und geplante Maßnahmen zum Wassermengenmanagement

Hydrogeologisches Strukturmodell - UVP

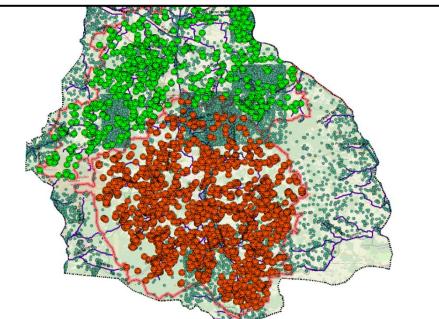

Projekte zum Wassermanagement:

Wasserspeicher / GW-Anreicherung / Ersatz von GW-Entnahmen / Wasserrückhalt und Konzepte

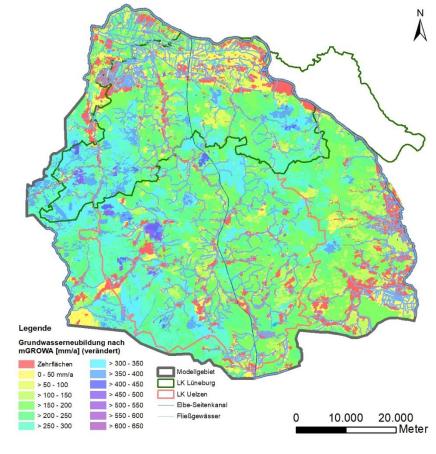

- 1. Speicher 770.000 m³ (Stöcken, 2003)
- 2. Speicher 440.000 m³ (Borg, 2014)
- 3. Speicher 250.000 m³ (Störtenbüttel, 1987)
- 4. GW-Anreicherung rd. 250.000 m³/a (Rosche, 2013)
- 5. Erweiterung ESK Beregnung von 14.500 ha auf 16.000 ha >> + rd. 1,5 Mio. m³ (~2016)
- Nutzung/Speicherung/Versickerung von Überschusswasser des ESK
- 7. Rückhalt in Entwässerungsgräben (~1990, 2023/24)
- 8. Speicher 1 Mio. m³ (Hankenbüttel)
- 9. Nutzung von Wasser aus einem Binnenpolder
 - 9.1 GW-Anreicherung (1 Mio. m³/a)
 - 9.2 Beregnung über Zwischenspeicher (100.000 m³/a)
- 10. Steuerung/Einstau von Drainagen
- 11. Anheben von Gewässersohlen
- 12. Identifizierung von Flächen zur GW-Anreicherung
- 13. WaterReuse: Klarwasser aus Kläranlagen

Integriertes Wassermengenmanagement für LG - UE

Hydrogeologisches Strukturmodel - Umweltverträglichkeitsprüfung



- Modellgebiet 3.850 km²
- Aussagegebiet 2.788 km²
- Stationäre u. instationäre Berechnungen


Szenarien - Bestand >> Planung

- Wasserstandsänderungen
- Speichermengen
- Anbindung an die Gewässer
- Zeitliche Differenzierung (instationär)

Brunnen/Bohrungen

- 865 Beregnungsbrunnen in Lüneburg
- 1.194 Beregnungsbrunnen in Uelzen
- 118 Förderbrunnen Trinkwasser/Gewerbe
- 385 Grundwassermessstellen
- über 22.000 ausgewertete Bohrprofile

Grundwasserneubildung

Basis: Wasserhaushaltsmodell mGROWA (monatlicher Großräumiger Wasserhaushalt, LBEG)

Gebietsmittel: 679,3 Mio. m³/a (176 mm/a)

Quelle: Dachverband Feldberegnung Uelzen

Projekte zum Wassermanagement (1 + 2)

Wasserspeicher Stöcken (UE, 2003)
Gespeichert wird Wasser aus der Zuckerrübe

- Speichervolumen: ~ 770.000 m³
- Wasserfläche bei Vollfüllung:
 - ~ 13,6 ha
- Wasserfläche bei min. Wasserstand:
 - ~ 11,0 ha
- Wassertiefe bei Vollfüllung:
 6,30 bis 6,80 m
- Erdbewegungen beim Bau:
- 305.000 m³
- Verlegte Kunststoffdichtungsbahnen:
 141.800 m²
- 6 Pumpen mit je 350 m³/h
- Gesamtleistung 2.100 m³/h
- Förderhöhe 12 bar (120 m)
- Anschlussleistung rd. 1 MW
- Kosten rd. 5 Mio. €
- Förderung 3 Mio. €

Betriebszeit 22/11 Jahre Ersetzte Grundwasserentnahme Insgesamt rd. 25 Mio. m³

Wasserspeicher Borg (UE, 2014)

Inhalt: ~ 440.000 m³

Gesamtkosten rd. 5,25 Mio. €, Fördermittel 3 Mio. €

40/20 mm Zusatzregen auf 1250 ha

Projekte zum Wassermanagement (5)

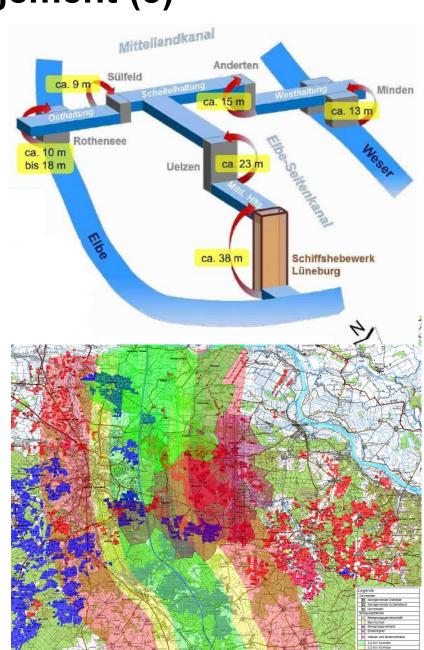
AQuaVia Machbarkeitsstudien Erweiterung der ESK-Entnahmen

- Uelzen
- Ostheide (Lüneburg)
- Gihorn (Bachelorarbeit)

Ab 2010 Erweiterung der ESK-Wasserverwendung über einen Korridor von jeweils 2,5 km hinaus

- Untersuchungsgebiet (gesamt) rd. 2000 km²
- Beregnungsfläche ESK

Bestand: ~ 14.600 ha

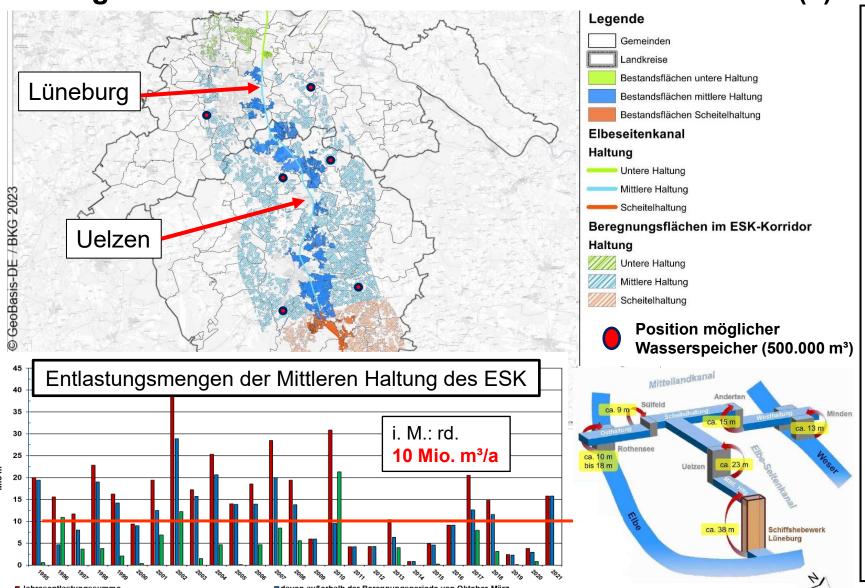

Ziel: > 16.000 ha

Ziel erreicht: 2015/16

GW – Substitution (i.M.)

Bestand: ~ 8 Mio. m³/a

Ziel: > 10 Mio. m³/a



Projekte im Vorentwurfsstadium in Nordostniedersachsen

Management der Entnahmen aus dem Elbe-Seitenkanal (6)

nnerhalb der Beregnungsperiode von April-Septembe

Untersuchung der Nutzung der Entlastungsmengen an sechs ausgewählten Standorten

Berechnung von zwei Modellvarianten:

- Variante 1: Speicherbecken
- Variante 2: Speicherbecken und Versickerungsflächen

Ziele:

- Substitution von Grundwasserentnahmen
- Grundwasseranreicherung in den Grundwasserkörpern

Neue Infrastruktur erforderlich

- Entnahmebauwerke
- Transportleitungen
- Wasserspeicher
- Versickerungsflächen

Qualität des zu versickernden Wassers ist laufend zu Überwachen

Projekte zum Wassermanagement (7)

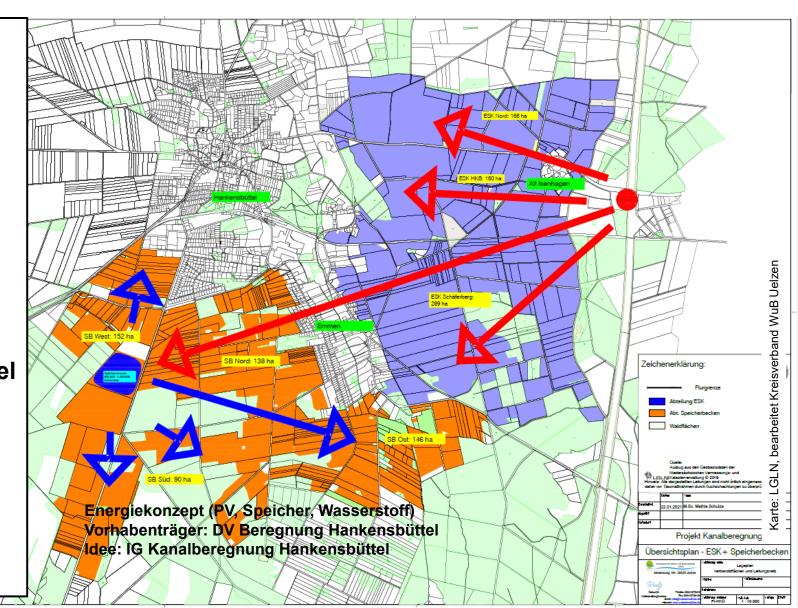
Rückhalt in Gewässern

- Temporärer Einstau durch Stauanlagen (fest, teilbeweglich, automatisiert)
- Technisch leicht umzusetzen
- Anhebung der GW-Stände
- Besserer kapillarer Aufstieg in den Wurzelraum
- Aber: Geringe Speicherwirkung
- Anpassung der Gewässerunterhaltung erforderlich
- Umgesetzt in der Lucie im Wendland (1990ger), in der Tanger in Sachsen-Anhalt (um 2020) und Ostkreis Uelzen (2023, Bild rechts-unten)
- Aktuelles Projekt im Landkreis Gifhorn im Versuchsstadium (seit 2024)
- wasserrechtlich eher schwierig (ökolog. Durchgängigkeit) umzusetzen,
 aktuell Lösungssuche auf ministerieller Ebene (Sachsen-Anhalt, Niedersachsen)

Suderburger Stauklappe, Gnarrenburger Moor, © Ostfalia/INBW)

Stauanlage in der Tanger, Sachsen-Anhalt (Quelle: mdr)

Stauanlage Beispiel aus der Lucie, Wendland (Quelle:DFU)

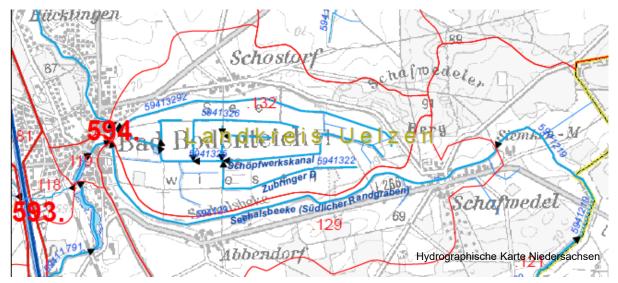


Stauanlage in der Wipperau, Uelzen (Quelle:DFU)

Projekte im Vorentwurfsstadium in Nordostniedersachsen (8)

Wasserspeicherkonzept Hankensbüttel

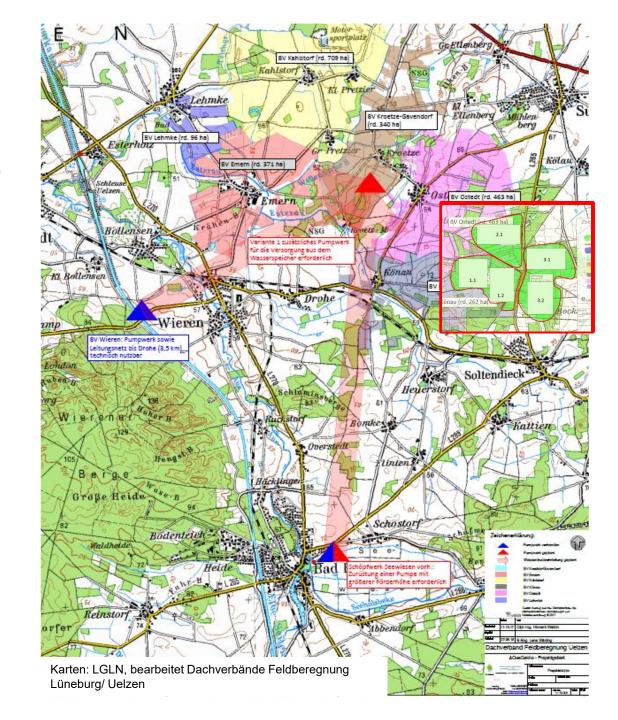
- Speichervolumen: ~ 1 Mio. m³
- Speicherfüllung im Winter
- Beregnung im Sommer aus
 - Speicherbecken
 - Elbe-Seitenkanal
 - Grundwasser
- Kosten rd. 10 Mio. €
- Rd. 4.000 ha Beregnungsfläche
- Dachverband Beregnung Hankensbüttel als Vorhabenträger
- Konzeptstadium
 - Energiekonzept (PV, Speicher)
 - Wasserstofferzeugung/-speicherung
- Planung Kreisverband WuB Uelzen
- Idee/Trägerschaft: Dachverband Hankensbüttel


Projekt zum Wassermanagement Grundwasseranreicherung (9.1)

AQuaGEKKO:

Planung Variante 1: Speicherbecken (nicht dargestellt)

Konzept (Variante 2) Grundwasseranreicherung


2 Versickerungsanlagen für jeweils ca. 500.000 m³/a

Schöpfwerk mit rd. 600 ha EZG

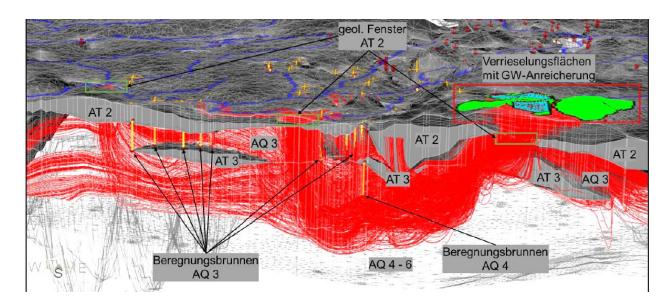
Jahreswassermenge: > 1,7 Mio. m³

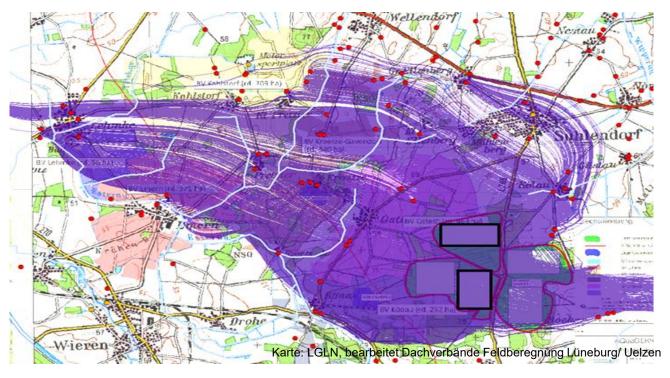
Minimal im Sommer: 40.000 m³/Monat

Projekt zum Wassermanagement Grundwasseranreicherung (9.1)

AQuaGEKKO:

Konzept

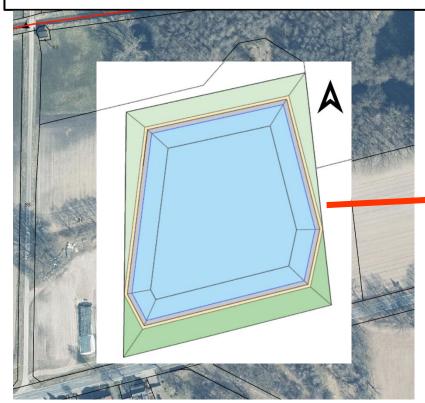

Grundwasseranreicherung 2 Versickerungs-anlagen für jeweils ca. 500.000 m³/a

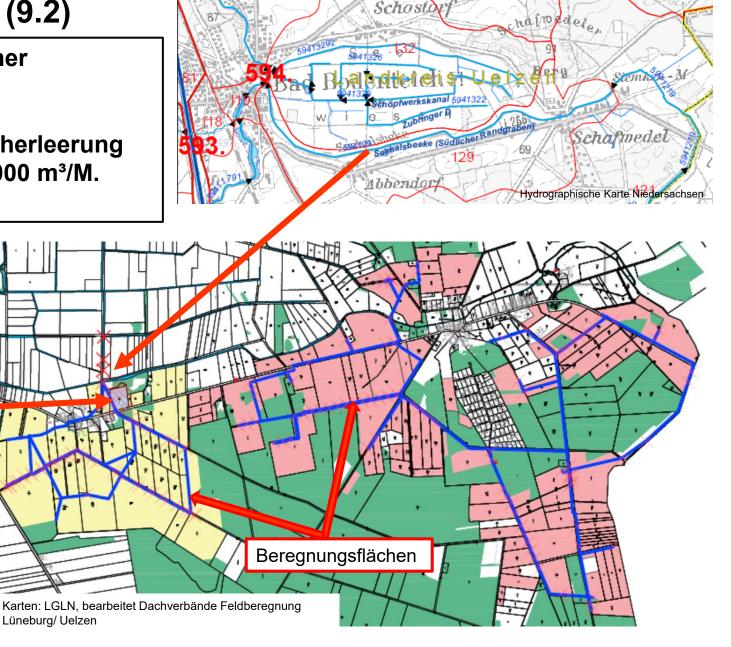

Nutzen des versickerten Wassers:

nach 5 Jahren ~ 30 % nach 10 Jahren ~ 60 % nach 15 Jahren ~ 100 %

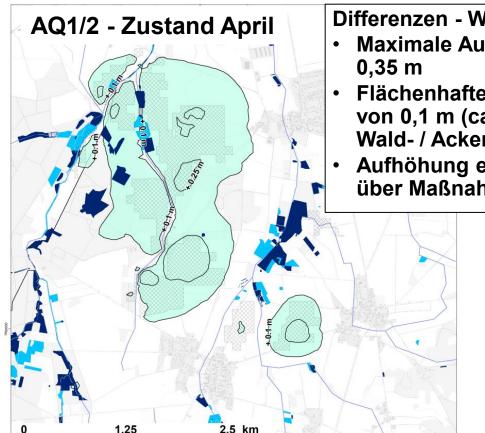
Stationär nach max. 20 Jahren

- Grundwasserkörper reagiert verzögert
- stufenweise Mehrentnahme mit entspr.
 Anpassung der Wasserrechtlichen Erlaubnis
- je näher die Brunnen an der Versickerungsfläche desto größer der Nutzen
- Ein Teil des Wassers stabilisiert den GW-Haushalt




Projekt zum Wassermanagement Wassernutzung aus Binnenpolder (9.2)

- Beregnung (~ 200 ha) über Zwischenspeicher
- Volumen ca. 70.000 m³
- Vollfüllung im Winter
- Auffüllung in Beregnungszeit entspr. Speicherleerung


Lüneburg/ Uelzen

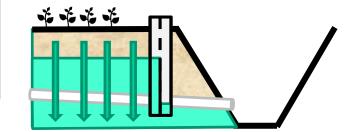
- Minimalmenge aus Polder im Sommer: 40.000 m³/M.
- Substitution von GW > 100.000 m³/a

Wirkung der Steuerung von Drainagen (10)

Differenzen - Winter:

- Maximale Aufhöhung ca.
- Flächenhafte Aufhöhung von 0,1 m (ca. 467 ha, Wald- / Ackerflächen)
- Aufhöhung erstreckt sich über Maßnahmengebiet

Differenzen - Sommer:


Maximale Aufhöhung ca. 0,25 m

AQ1/2 - Zustand August

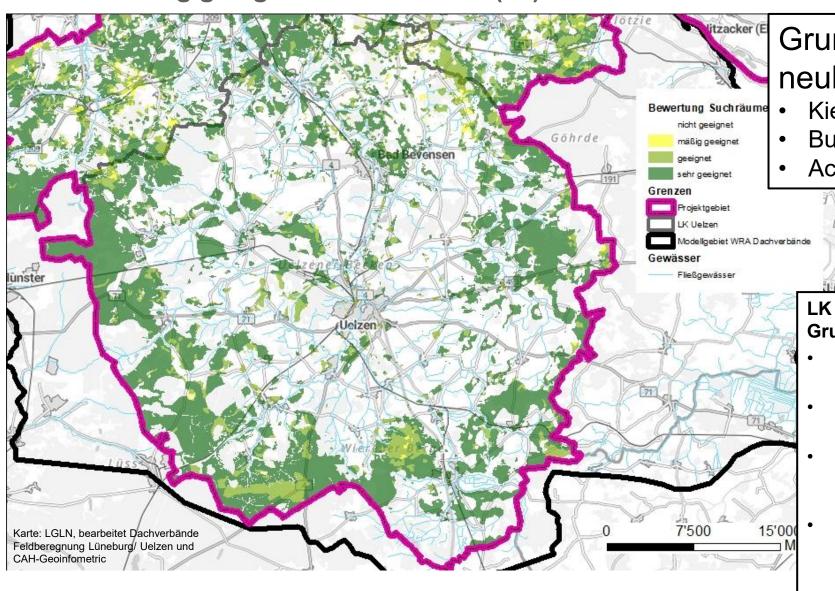
Wrestedt

- Flächenhafte Aufhöhung von 0,1 m (ca. 262 ha)
- Keine aktive Drainagesteuerung → Aufhöhung verringert sich
- Verringerung gegenüber **Zustand April ca. 44 %)**

Variable Drainagehöhe durch Mönchbauwerk

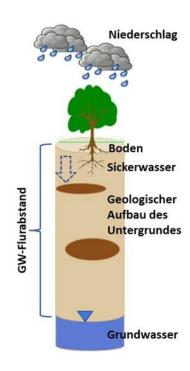
Ganzjähriger Anstieg der Standrohrspiegelhöhen im oberflächennahen Grundwasserleiter

- Größte Wirkung im oberflächennahen GWL im Bereich des Maßnahmengebiets
- Abnahme der Wirkung in den tieferen GWL (kleinere Differenzen, kleinräumigere Verbreitung)


Ganzjährige Zunahme des Basisabflusses an benachbarten Fließgewässern

- Wirkung nimmt in den Monaten der aktiven Maßnahme zu und klingt in den dazwischenliegenden Monaten wieder ab
- Beispielhafte Betrachtung zeigt, dass ein Großteil des angereicherten Wassers über den Basisabfluss wieder abgeführt wird (ca. 84 %)

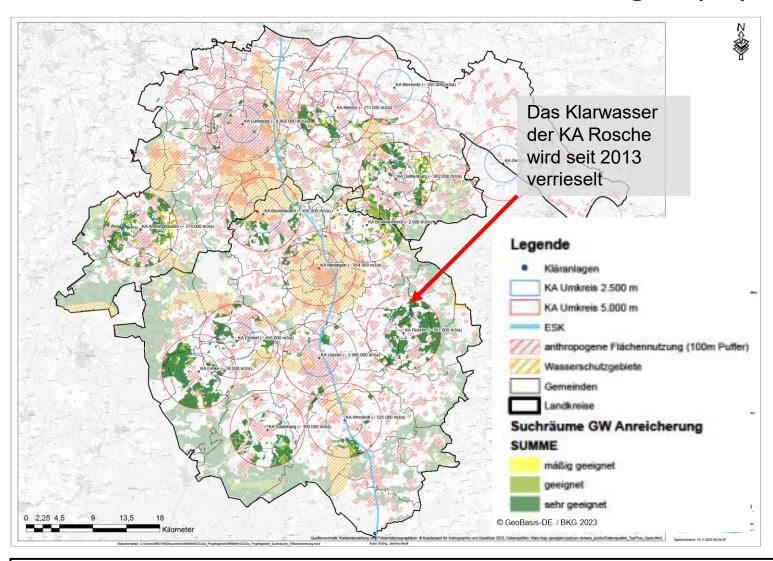
Aktuell gibt es dazu mehrere Pilotprojekte (Gifhorn, Uelzen....)


GW-Anreicherung

Identifizierung geeigneter Suchräume (12)

Grundwasserneubildung

- Kiefer/Fichte +/- 0 mm/a
- Buche 60 70 mm/a
- Acker 100 250 mm/a



LK Uelzen (ca. 1.454 km²): Grundwasseranreicherung

- Fläche mit Gesamtbewertung: "sehr geeignet" ca. 392 km²
- Fläche mit Gesamtbewertung: "geeignet" ca. 84,2 km²
- Fläche mit Gesamtbewertung: "evtl. geeignet" ca. 4,2 km²
- 60 mm zusätzliche GW-Neubildung auf 1/5 der Fläche (100 km²) durch Waldumbau (Nadel- zu Laubwald) ergeben rd. 6 Mio. m³/a Wasser

Substitution durch Wasser aus Kläranlagen (13)

AKTUELL Projekt "ANAforSA", KA Lüneburg (gefördert ML/MU): Untersuchung zur Nutzung - Wasserqualität, Versickerungsflächen, techn. Randbedingungen (Träger: Stadtentwässerung LG/ Dachverband Feldberegnung Lüneburg)

Ergebnisse:

- 15 Kläranlagen im Projektgebiet
- ca. **17 Mio. m³** Wasser pro Jahr
- theoretisch hohe Verfügbarkeit

Vorrausetzung für eine direkte Nutzung ist mindestens die

4. Reinigungsstufe

- KA > 100.000 EW, verpflichtend ab 2035 >> KA Lüneburg
- KA > 10.000 EW, verpflichtend ab 2040
 - KA Uelzen
 - KA Medingen
 - KA Dahlenburg

Neue Infrastruktur erforderlich

- Transportleitungen
- Wasserspeicher
- Versickerungsflächen

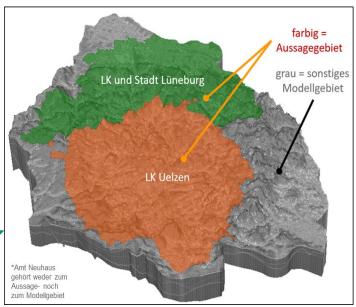
Qualität des zu versickernden Wassers ist laufend zu Überwachen

(u. a. phytosanitäre Anforderungen)

Integriertes Wassermengenmanagementprojek für Lüneburg und Uelzen (IWAMAKO ZuSa)

Bestandsanalyse

• Bedarfsanalyse 2035/2050


Lösung für Defizite

Umsetzungsstrategien

Untersuchungen, Konzepte und Ergebnisse zum Wassermanagement:

- 10. Steuerung/Einstau von Drainagen
- 11. Anhebung Gewässersohlen
- 12. Identifizierung von Flächen zur GW-Anreicherung
- 13. WaterReuse: Klarwasser aus Kläranlagen

Hydrogeologisches Strukturmodell

Szenarienberechnung Bestand >> Planung

- Wasserstandsänderungen
- Speichermengen
- Anbindung an die Gewässer
- Zeitliche Differenzierung(instationär)

√Landwirtschaftskammer

Niedersachsen

Bestandsanalyse

U

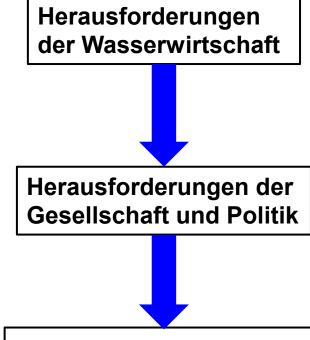
otential

an

alyse

gefördert durch:

Integriertes Wassermengenmanagementprojekt für Lüneburg und Uelzen (IWAMAKO ZuSa)


Gesamtbewertung der untersuchten Optionen - Zusätzliche Wassermengen und Maßnahmenübersicht

Zusätzlich verfügbare Menge rd. 12,5 Mio. m³/a (modelltechnisch nachgewiesen) Weitere potentiell verfügbare Wassermenge rd. 15 Mio. m³/a

	Maßnahme	Vorteile	Herausforderungen	Effekt für Grundwasserdargebot	Gesamtbewertung
1.			ggf. Verringerung landwirtschaftlich		Ţ.
2.	das Maßnah	Men of Cynergien	Ggf. Querbauwerk, rechtl. Rahmen, Baukosten, Ausgleichsmaßnahmen, Hochwasserrisiko, Wirkung kaum	vorhanden, gering	Aus ökologischen Gründen umsetzen und finanzieren
3.	Elmic Vd.Sco.	Sinai	quantifizierbar	kaum vorhanden	
4.	Maßnahmen in der Landwirtsch.	unmittelha:	Sonders of	vorhanden, gering	Bewässerung bleibt das effektivste Mittel zur Klimaanpassung im Nutzpflanzenbau
6.1	Die Maßnah Wasser Maßnahmen in der Landwirtsen. Erweiterung der ESK-Beregnung Substitution Überschusswasser ESK untere Haltung ESK / Elbe Versickerung aus Kläranlagen	Bisher schon erprose. Wehr in Geesthacht unabhage Wasserquelle. Kein Speicher erforderlich.	erfügbar dann	effektiv we	sehr geeignet
6.2	Substitution Überschusswasser ESK	Bisher schon erprobtes Verfahren.	Kosten technische (Wasserspeicher, Versickerungsanlage. ,	acht word	net Pnet
7.	untere Haltung ESK / Elbe	Durch Wehr in Geesthacht unabhägige Wasserquelle. Kein Speicher erforderlich	Kosten technische Infrastruktur (Entnahmebauwerke, Zuleitungen, Druckerhöhungen, Verteilungsnetze)	hom	kann eignet
8.1	Versickerung aus Kläranlagen	Große verfügbare Wasserressource	Qualität des Wassers (4. Reinigungsst. erforderlich) Flächenbedarf, Kosten Infrastruktur	sehr hoch	sehr geeignet
8.2	Verregnung aus Kläranlagen , nach Speicherung	Große verfügbare Wasserressource	Qualität des Wassers (4. Reinigungsst. erforderlich), Kosten Infrastruktur, phytosanitäre Risiken	sehr hoch	sehr geeignet

Wassermengenmanagement für die Wasserversorgung Konzepte und Projekte - Wasser zur Daseinsvorsorge Resümee

- Wasser ist das wichtigste und vulnerabelste Element im Klimawandel
- Wasser für Menschen, Tiere und Nahrungsmittelerzeugung
- Vernetzung von Wasserbedarf und Wasservorkommen
- · Bedarfe nach Menge und Qualität berücksichtigen und abdecken
- Landschaftswasserhaushalt stabilisieren
- Zielkonflikte auflösen (z.B. Wasserrückhalt Durchgängigkeit)
- Akzeptanz für Maßnahmen und Finanzierung
- Es gibt viele Maßnahmen mit denen schon begonnen werden könnte
- Muss politisch gewollt und gesellschaftlich akzeptiert sein
- Finanzierung/Förderung über Landes-, Bundes- und EU-Mittel
- Kosten vergleichbar zur Entwässerung in den 1950 1970ger Jahren
- Es geht nur mit allen Akteuren gemeinsam
- Auch die Landwirte müssen aktiv werden

Herausforderungen bedürfen kluger Köpfe und gemeinsamer Anstrengungen

